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Abstract

Continual learning—the ability to learn many
tasks in sequence—is critical for artificial learning
systems. Yet standard training methods for deep
networks often suffer from catastrophic forgetting,
where learning new tasks erases knowledge of ear-
lier tasks. While catastrophic forgetting labels the
problem, the theoretical reasons for interference
between tasks remain unclear. Here, we attempt
to narrow this gap between theory and practice by
studying continual learning in the teacher-student
setup. We extend previous analytical work on
two-layer networks in the teacher-student setup
to multiple teachers. Using each teacher to rep-
resent a different task, we investigate how the
relationship between teachers affects the amount
of forgetting and transfer exhibited by the stu-
dent when the task switches. In line with recent
work, we find that when tasks depend on simi-
lar features, intermediate task similarity leads to
greatest forgetting. However, feature similarity
is only one way in which tasks may be related.
The teacher-student approach allows us to dis-
entangle task similarity at the level of readouts
(hidden-to-output weights) and features (input-to-
hidden weights). We find a complex interplay
between both types of similarity, initial trans-
fer/forgetting rates, maximum transfer/forgetting,
and long-term transfer/forgetting. Together, these
results help illuminate the diverse factors con-
tributing to catastrophic forgetting.
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1. Introduction
One of the biggest open challenges in machine learning is
the ability to effectively perform continual learning: learn-
ing tasks sequentially. A significant hurdle in getting sys-
tems to do this effectively is that models trained on task A
followed by task B will struggle to learn task B without
un-learning task A. This is known as catastrophic interfer-
ence or catastrophic forgetting (McCloskey & Cohen, 1989;
Goodfellow et al., 2013), which occurs because weights
that contain important information for the first task are over-
written by information relevant to the second. The harmful
effects of catastrophic forgetting are not limited to continual
learning. They also play a role in multi-task learning, re-
inforcement learning and standard supervised learning, for
example under distribution shift (Arivazhagan et al., 2019;
Toneva et al., 2018).

As a result, the phenomenon has received increased inter-
est in recent years. In neuroscience, much work has been
done to understand the brain’s ability to consolidate learn-
ing from earlier tasks, thereby making it relatively robust to
forgetting (Flesch et al., 2018; Cichon & Gan, 2015; Yang
et al., 2014). Similarly, a series of works has started a sys-
tematic empirical analysis of this phenomenon in deep net-
works (Parisi et al., 2019; Mirzadeh et al., 2020; Neyshabur
et al., 2020; Nguyen et al., 2019; Ruder & Plank, 2017).
These works consistently observed a counter-intuitive role
of the similarity between tasks A and B, with intermediate
task similarity leading to worst forgetting (Ramasesh et al.,
2020; Doan et al., 2020; Nguyen et al., 2019).

The purpose of this work is to tackle continual learning from
the complementary perspective of high-dimensional teacher-
student models (Gardner & Derrida, 1989; Seung et al.,
1992; Biehl & Schwarze, 1993; Zdeborová & Krzakala,
2016). These models are a popular framework for studying
machine learning problems in a controlled setting, and have
recently seen a surge of interest in attempts to understand
generalisation in deep neural networks.

Main contributions

• We analyse continual learning in two-layer neural net-
works by deriving a closed set of equations which pre-
dict the test error of the network trained on a succession
of tasks using one-pass (or online) SGD, extending
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Figure 1. Continual learning in the teacher-student setup (a) Illustration of the vanilla teacher-student setup, in which a “student”
network is trained on i.i.d. inputs with labels from a “teacher” network. (b) We model continual learning by training a two-layer student
(Eqn. 1), on a succession of two teachers, representing distinct tasks A and B. (c) Typical generalisation errors of the student ( Eq. 2)
w.r.t. both teachers during vs. training step s. The solid lines show theoretical predictions derived in subsection 2.1; the crosses are
obtained through a single numerical simulation of a networks with input dimension N = 104. We also label the key quantities of interest
in this study: forgetting, Ft ( Eq. 3), and transfer, Tt, ( Eq. 4). Parameters: M = 2, K = 1, V = 1.

classical work on standard supervised learning by Saad
& Solla (1995a); Riegler & Biehl (1995).

• Using these equations, we show that intermediate task
similarity leads to greatest forgetting in our model.

• We disentangle task similarity on the level of fea-
tures (input-to-hidden weights) and readouts (input-to-
hidden weights) and describe the effect of both types of
similarity on forgetting and transfer in infinitely wide
networks. We find that feature and readout similarity
contribute in complex and sometimes non-symmetric
ways to a range of forgetting and transfer metrics.

We summarise our approach in Fig. 1. In the classical
teacher-student setup (illustrated in Fig. 1a), a “student”
neural network is trained on synthetic data where inputs
x ∈ RD are drawn element-wise i.i.d. from the normal
distribution and labels are generated by a “teacher” net-
work (Gardner & Derrida, 1989). To model continual learn-
ing, here we consider a setup with two teachers (denoted
by † and ‡), which correspond to two tasks to be learned
in succession. Let φ(x;W,v) denote the output of a two-
layer network with L hidden neurons, first and second layer
weights W ∈ RL×D and v ∈ RL, and activation g after the
hidden layer, i.e.

φ(x;W,v) =

L∑
l=1

vlg

(
Wlx√
D

)
. (1)

We generally use K (M ) for the number of hidden neurons
of the student (teacher). In the first phase of training (left
side of Fig. 1b), labels are generated by the first teacher
via y† = φ(x;W†,v†), and student outputs are given by
ŷ† = φ(x;W,h†). Training proceeds using Stochastic
Gradient Descent (SGD) on the squared error of y†, ŷ† in
the online regime, where at each step of SGD we draw a
new sample (x, y) to evaluate the gradients, until the task

switch. We follow a standard multi-headed approach to
continual learning (Zenke et al., 2017; Farquhar & Gal,
2018), in which the student keeps its first-layer weights for
the new task, but adds a set of head weights. Thus in the
second phase of training, the error is computed over y‡,
ŷ‡. Retaining both heads allows us to continually monitor
the performance of the student on both tasks after switch,
and in theory permits the student to represent both teachers
perfectly if given sufficient hidden units.

The generalisation error of the student on the two tasks can
be defined as

ε∗(W,h∗,W∗,v∗) ≡
1

2
〈 [φ(x;W∗,v∗) −φ(x;W,h∗)]2

〉
, (2)

where ∗ denotes either task † or ‡, and the average 〈·〉 is
taken over the input distribution x for a given set of teacher
and student weights. Note in the online SGD setting, there
is no distinction between train and test error. We emphasise
that the student has the same set of first-layer weights (W)
for both tasks, but different head weights h†, h‡.

Our main theoretical contribution is a set of dynamical equa-
tions that predict the evolution of the test error Eq. 2 during
the course of training in the limit of large input dimension
D →∞ with K,M ∼ O(1), see Sec. 2. We plot the theo-
retical prediction in Fig. 1c together with a single simulation
(crosses); even at moderate input size D = 104, the agree-
ment is good. We observe that the student error on the first
task (green) decreases in the first period of training. After
switching tasks at s̃ = 5 · 105, the error of the student on the
second task (yellow) decreases, but the error on the first task
increases. We define forgetting and transfer at time s̃+ t as

Forgetting: Ft ≡ ε†|s̃+t − ε†|s̃, (3)

Transfer: Tt ≡ ε‡|s̃ − ε‡|s̃+t, (4)
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see Fig. 1c. An increase in error for the first task after the
switch corresponds to positive forgetting, while a reduction
in error for the second task corresponds to positive trans-
fer. An alternative definition of transfer would compare
the performance of the continual learner on task B to the
performance of a student that was trained directly on that
task. However, this definition introduces additional hyper-
parameters which need to be accounted for, such as the
distribution of weights at initialisation and at the switching
time. Since our focus in this manuscript is on catastrophic
forgetting, we focus on the simpler definition of transfer in
(4), and leave an exploration of other transfer measures to
future work.

A fundamental question in continual learning is the rela-
tionship between forgetting/transfer and the task similarity.
While one might expect forgetting to decrease with increas-
ing task similarity, Ramasesh et al. (2020)—through a series
of careful experiments on the CIFAR10 and CIFAR100
datasets—observed that intermediate task similarity leads to
greatest forgetting. We were able to reproduce their results
for the two-layer neural networks (1), see App. A.The pri-
mary objective of this work is now to use our multi-teacher-
student setup, which gives us full control over teacher simi-
larity, to analyse dependence of forgetting and transfer on
task similarity theoretically.

1.1. Further Related Work

The teacher-student framework has a long history in
studying the dynamics of learning in neural network mod-
els (Gardner & Derrida, 1989; Seung et al., 1992; Watkin
et al., 1993; Engel & Van den Broeck, 2001; Zdeborová
& Krzakala, 2016) and has recently experienced a surge
of activity in the machine learning community (Zimmer
et al., 2014; Zhong et al., 2017; Tian, 2017; Du et al., 2018;
Soltanolkotabi et al., 2018; Aubin et al., 2018; Saxe et al.,
2018; Baity-Jesi et al., 2018; Goldt et al., 2019; Ghorbani
et al., 2019; Yoshida & Okada, 2019; Ndirango & Lee, 2019;
Gabrié, 2020; Bahri et al., 2020; Zdeborová, 2020; Advani
et al., 2020). While this article went to press, a preprint by
Asanuma et al. (2021) appeared which analyses continual
learning in a teacher-student setup for linear regression.

The teacher-student approach has recently been used to
study transfer learning, both in linear networks (Lampinen
& Ganguli, 2018) and in non-linear perceptron models (Dhi-
fallah & Lu, 2021), which correspond to the K = M = 1
case of our setup. While the transfer of knowledge from one
task to the next is an important aspect in continual learn-
ing, the latter is crucially also interested in the retention–or
forgetting–of knowledge about the first task. This can be
most clearly seen in the fact that in transfer learning, there
is only one set of student head weights. Indeed, we will find
an interesting interplay between transfer and forgetting in

our models of continual learning.

Continual learning in the NTK regime Doan et al.
(2020) analysed the impact of task similarity, and also found
increasing task similarity leads to more forgetting. The key
difference to our work is that their study focuses on the
neural tangent kernel (NTK) (Jacot et al., 2018) or “lazy”
regime (Chizat et al., 2019) of two-layer networks, where the
first layer of weights stays approximately constant through-
out training. Bennani & Sugiyama (2020) gave guarantees
on the error achieved with orthogonal gradient descent in
the same regime. Here, we focus on the regime where the
weights of the network move significantly and are thus able
to learn features, which will be key to our analysis in Sec. 2
and to our disentangling of feature vs. readout similarity
in Sec. 3.

The dynamics of two-layer neural networks trained using
online SGD in the classic teacher-student setup of Fig. 1a
was first studied in a series of classic papers by Biehl &
Schwarze (1995) and Saad & Solla (1995a) who derived a
set of closed ODEs that track the test error of the student
(see also Saad & Solla (1995b); Biehl et al. (1996); Saad
(2009) for further results and Goldt et al. (2019) for a re-
cent proof of these equations). Here, we extend this type
of analysis to the continual learning model of Fig. 1b. The
aforementioned works all consider the limit of large input
dimension D →∞, while the number of neurons is of or-
der 1. The complementary “mean-field” limit of finite input
dimension and an infinite number of hidden neurons was
analysed (Mei et al., 2018; Chizat & Bach, 2018; Sirignano
& Spiliopoulos, 2020; Rotskoff & Vanden-Eijnden, 2018).
We will turn to this limit to disentangle the impact of feature
and readout similarity in Sec. 3.

Many methods for combating catastrophic interference
have been proposed, often taking the form of regularisa-
tion, architecture expansion, and/or replay (Parisi et al.,
2019; Farquhar & Gal, 2018). Regularisation-based meth-
ods constrain weights to retain information about earlier
tasks (Zenke et al., 2017; Li & Hoiem, 2017; Kirkpatrick
et al., 2017); architectural methods add capacity to the net-
work for each new task (Rusu et al., 2016); and replay
methods store data from earlier tasks to interleave when
learning new tasks (McClelland et al., 1995; Shin et al.,
2017).

2. Continual learning in the large input limit
We begin by studying the impact of task similarity on the
dynamics and the performance of learning in the limit of
large input dimension D → ∞, while the number of
neurons K,M ∼ O(1).
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Training We train the student using online stochastic gra-
dient descent on the L2 loss. Each new input x is fed to the
teacher to compute the target output via y∗ = φ(x;W∗,v∗),
while the student prediction is given by ŷ† = φ(x;W,h∗).
The student’s weights in both layers are updated through
gradient descent on 1

2 (ŷ∗ − y∗)2. The SGD weight updates
are given by:

wµ+1
k = wµ

k −
αW√
D
v∗µk g′(λµk)∆∗µxµ (5a)

h∗µ+1
k = h∗µk −

αh

D
g(λµk)∆∗µ, (5b)

where αW is the learning rate for the feature weights, αh is
the learning rate for the head weights, and

∆†µ ≡
∑
k

h†µk g(λµk)−
∑
m

v†mg(ρµm); (6)

∆‡µ ≡
∑
k

h‡µk g(λµk)−
∑
p

v‡pg(ηµp ). (7)

We have also introduced the local fields

ρm ≡
wmx√
D
, ηp ≡

wpx√
D
, λk ≡

wkx√
D

(8)

of the mth teacher † unit, nth teacher ‡ unit, and kth student
unit, respectively. In general, indices i, j, k, l are used for
hidden units of the student; m,n for hidden units of †;
and p, q for hidden units of ‡. Initial weights are taken
i.i.d. from the normal distribution with standard deviation
σ0. The different scaling of the learning rates for first and
second-layer weights guarantees the existence of a well-
defined limit of the SGD dynamics as D →∞. We make
the crucial assumption that at each step of the algorithm,
we use a previously unseen sample (x, y∗). This limit of
infinite training data is variously known as online learning
or one-shot/single-pass SGD. We note that in general the
head weights could also be matrices if a teacher has multiple
output nodes, but we focus on the case of a single output
here to keep notation light.

The “order parameters” of the problem The key quan-
tity in our analysis is the test error Eq. 2, which (e.g. for †)
can be written more explicitly as

ε†(W,W†,h†,v†) =

1

2

〈[
K∑
k=1

h†kg(λk)−
M∑
m=1

v†mg(ρm)

]2〉
. (9)

To evaluate the average, the input x only appears via prod-
ucts with the student weights (λk) and likewise for the
teacher; we can hence replace the high-dimensional aver-
ages over x with an average over theK+M “local fields” λ
and ρ. Since we take the inputs element-wise i.i.d. from

the standard Gaussian distribution, we have 〈xi〉 = 0 and
〈xixj〉 = δij . It also follows immediately that the local
fields are jointly Gaussian, with mean 〈λk〉 = 〈ρm〉 = 0.
The test error can hence be written as a function of only the
second moments of the joint distribution of (ρ, λ), which
we define as

qkl ≡ 〈λkλl〉, rkm ≡ 〈λkρm〉, tmn ≡ 〈ρmρn〉; (10)

and the second-layer weights of the students. In other words,
asymptotically

lim
D→∞

ε†(W,W†,h†,v†) = ε†(Q,R,T,h†,v†). (11)

where Q = (qkl), etc. Note there is an equivalent formu-
lation for ‡ with the η local field and relevant second-layer
weights. These overlap matrices, or “order parameters” in
statistical physics jargon, have a clear physical interpre-
tation, which can be seen when evaluating the averages
explicitly. The so-called teacher-student overlap, rkm for
example:

rkm ≡ 〈λkρm〉 =
wkw

†
m

D
, (12)

quantifies the overlap or similarity between the weights of
the kth hidden unit of the student and the mth hidden unit of
the teacher. Similarly, qkl gives the self-overlap of the kth
and lth student nodes, and tmn gives the (static) self-overlap
of teacher nodes.

Task similarity The teacher-student setup gives us precise
control over the task similarity via the overlap between the
first-layer weights of different teachers,

vmp ≡ 〈ρmηp〉 =
1

D
w†mw‡p, (13)

which we can tune to observe its effects on the dynamics of
continual learning.

2.1. Results

2.1.1. AN ASYMPTOTICALLY EXACT THEORY FOR THE
DYNAMICS OF CONTINUAL LEARNING

The test error Eq. 2 can be written in terms of the order
parameters Eq. 10, so to compute the test error at all times
we need to describe the evolution of Q etc. during training of
the student using SGD Eq. 5. Such equations were derived
in the vanilla teacher-student setup by Saad & Solla (1995a);
Riegler & Biehl (1995), and here we extend this approach to
our continual learning model. We illustrate their derivation
for the teacher-student overlap rkm Eq. 12. Taking the
inner product of Eq. 5a (in the case of ∗ = †) with w†n and
substituting the SGD update Eq. 5a yields

drµkm ≡ r
µ+1
km − r

µ
km =

wµ+1
k w†m
D

−
wµ
kw
†
m

D
(14)

= −αW

D
h†µk g

′(λµk)∆†µρµm (15)
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Figure 2. Asymptotic theory matches finite-sized simulations.
Plots of progression of generalisation error (a) and order parame-
ters (b-e) for both neural network simulations (crosses) and ODE
solutions (solid lines). In this example, the teachers are fully over-
lapping as evidenced by the identical trajectories of U and R,
the student-teacher† and student-teacher‡ overlaps respectively.
There is a teacher switch at step 25,000. There is close agreement
between the simulation and differential equations (to within the
expected 1/

√
N deviation).

In the thermodynamic limit D →∞, the normalised num-
ber of steps τ ≡ µ/D becomes a continuous, time-like
variable and we can write:

drkn
dτ

= −αWh†k〈g
′(λk)∆†ρn〉. (16)

The remaining averages like 〈g′(λk)λ`g(ρn)〉 are simple
three-dimensional integrals over the Gaussian random vari-
ables (λk, λ`, ρm) and can be evaluated analytically for
g(x) = erf(x/

√
2) and for linear networks with g(x) = x.

Furthermore, these averages can be expressed only in term
of the order parameters, and so the equations close. The
ODEs for Q (Eq. D.9), U (Eq. D.10), as well as the student
head weights, h†, and h‡ (Eq. D.11), are given in App. C.

In Fig. 2, we show test errors and order parameters obtained
from numerically solving the ODEs (lines) and from a single
simulation (crosses). We find that the agreement between
theory and simulations is very good both for the test error
and on the level of individual order parameters even at
intermediate system size (D = 104).

2.1.2. IMPACT OF TASK SIMILARITY

We integrated the ODEs in the simplest possible case to
analyse the impact of task similarity. A student with K = 2
neurons is trained on two teachers with M = 1 neuron each,
all having sigmoidal activation g(x) = erf(x/

√
2)1. A sub-

set of the experiments was also carried out on Rectified
Linear Unit (ReLU) networks (purely with network simu-
lations) with broadly similar result; details are discussed
in App. I. For M = 1, the task similarity V (Eq. 13) be-
comes a scalar quantity that we denote V , which is the
cosine angle between the teachers’ input-to-hidden weights.
We parametrically generate teachers with specified similari-
ties using the procedure described in App. F. The teacher
head weights are ±1 and the input-hidden weights are nor-
malised. For odd activation functions like the scaled error
function, the sign of the input-to-hidden weights can be
compensated for by the readout weights so it is sufficient
to show results for V ∈ [0, 1]. Note that the student has
enough capacity to learn both teachers. Fig. 3a shows the
generalisation error of the student on the first task, which
decays exponentially after an initial period of stationary
error. After the switch at s̃ = 1× 106, the learning curves
separate depending on the task similarity.

We plot the forgetting Eq. 3 at different times after the
switch vs. V in panel c. For teachers with orthogonal first-
layer weights (V = 0), performance on the first task de-
grades after an initial period of no forgetting. For identical
first-layer weights (V = 1), the initial rate of forgetting is
large, but the student recovers and the error on the first task
plateaus at a relatively low value. In both cases, forgetting
is small compared to teachers with intermediate correla-
tions. Our model thus reproduces the empirical findings on
deep networks for image classification from Ramasesh et al.
(2020). We hypothesise that while it is intuitive that similar
teachers lead to small forgetting, orthogonal teachers can be

1Code for all experiments and ODE simulations can be found
at https://github.com/seblee97/student teacher catastrophic

https://github.com/seblee97/student_teacher_catastrophic
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Figure 3. The impact of task similarity on continual learning in the large-input limit. a (b): Generalisation error (2) with respect to
first (second) teacher (2) during training on two teachers of overlap V computed from the ODEs of Sec. 2. In the first phase of training the
generalisation error trivially follows the same trajectory for all teacher-teacher overlaps since the student only knows about one teacher.
Post-switch, the generalisation errors follows different paths depending on the relationship between teachers. c (d): Aggregate forgetting
(transfer), Ft (Tt), vs. teacher-teacher overlap, V , at various intervals after task-switch. V = 0 corresponds to orthogonal teacher weight
vectors, V = 1 corresponds to identical teacher weight vectors. Here we plot with crosses the results achieved with network simulations
on top of the lines representing the ODE solutions. Forgetting is strongest for teachers that are intermediately correlated, while the student
is relatively robust to forgetting for aligned or orthogonal teachers. Transfer is initially monotonically better for higher overlaps; in the
long time limit higher overlap appears to lead to long saddle points that are avoided in lower overlap regimes. Here and throughout, graphs
with cold colour tones (greens to blues) refer to the first teacher (†), while graphs with warm colour tones (yellows to reds) refer to the
second teacher (‡). The deviation of theory and simulation in the top left of (c) is a finite-size effect; the deviation is smaller than 1/

√
N .

Parameters: N = 10000,M = 1,K = 2.

more easily separated by the student by specialising to the
respective teacher units. This separation is made harder by
correlations between the weights of the teachers, akin to the
problem of source separation in signal processing.

To analyse transfer, we look at the generalisation on the
second task ‡ after the switch Fig. 3b. Just after the switch,
higher overlap allows faster transfer. All students then reach
a second plateau. Only students trained on tasks that are
close to orthogonal break away form this second plateau
and achieve an exponentially decaying generalisation error,
whereas the other students remain stuck. This is a remark-
able result, since the same student starting from random
initial weights would converge to the second teacher with-
out problem. Indeed, for orthogonal teachers, a student

trained to convergence on the first task will have the equiva-
lent of random initial weights for the second task (up to the
scaling of the networks), explaining its better performance.
Students trained on correlated tasks also converge to the
teachers of the first, but this correlated initialisation leads to
a loss of performance on the second task. We thus find that
task similarity aids short-term transfer but harms long-term
transfer in this setting.

3. Disentangling Feature and Read-out
Similarity

In the previous sections, the task similarity is measured by
the teacher-teacher overlap V , which is a metric over the
input to hidden weights of the teachers. There is however
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another notion of task similarity that is relevant for two-
layer networks: the read-out similarity, which is a metric
over the hidden to output weights. A diagram showing
the distinction between these similarities for a toy image
task is shown in Fig. 4. Most previous studies (Goodfellow
et al., 2013; Ramasesh et al., 2020) have not directly studied
this distinction, although Ramasesh et al. (2020) provided
evidence that the layers of a deep network that are closer to
the input are more responsible to forgetting, pointing to the
fact that different layers in a network might have different
impact on forgetting. The teacher-student framework allows
us to disentangle these different aspects of task similarity in
detail.

Input
Feature

Extractors
Feature

Representation

Task 1 Task 2 Task 1 Task 2

Different Features
Identical Read-outs

Identical Features
Different Read-outs

Figure 4. Distinction between feature similarity and read-out
similarity. In a toy image task, a model consists of a set of feature
extractors, which produce a feature representation vector from the
input. This representation is fed into a subsequent readout func-
tion (top). This distinction between feature extractors and readouts
leads to two related notions of task similarity: feature similarity
(bottom left), which is captured by V in our framework Eq. 13,
and read-out similarity, which we describe using Ṽ Eq. 18. Some
tasks may require the same features with different read-outs while
others require different features but similar read-outs. For concrete
examples of these similariity notiions, consider a continual learn-
ing task setting involving binary classification on MNIST images
where the first task requires distinguishing between odd digits and
even digits and the second requires distinguishing between digits
less than or equal to 4 and digits greater than 4. Both tasks could be
achieved with the same features but different readout functions. On
the other hand two tasks where the first consists of counting blue
squares and the second counting red circles will require different
features but could use the same readout function.

3.1. The Mean-Field Limit of Neural Networks

In the large input-limit networks we were considering previ-
ously, the hidden dimensions were small and there was no
meaningful way of defining a similarity over the hidden to

output weights. For this reason, in this section we consider
networks in the mean-field limit of large hidden dimension,

φ(x;W,v) =
1

M

M∑
m

vmg(Wmx), (17)

where we let the number of neurons M →∞ while the in-
put dimensionD remains finite. Note the scaling is different
here from the definition in Eq. 1. In analogy to Eq. 13, let
us define the teacher-teacher read-out similarity as:

Ṽ = h† · h‡. (18)

We can thus control both the feature and readout similarities
of the teachers, and measure forgetting and transfer of the
student in the (V, Ṽ ) plane. However, the student dynam-
ics cannot be described by the simple set of ODEs from
above; instead, the dynamics of the student are captured
by the time-evolution of the density ρ(θ) of the full set of
parameters θ of the network (Mei et al., 2018; Rotskoff &
Vanden-Eijnden, 2018; Chizat & Bach, 2018; Sirignano &
Spiliopoulos, 2019). This density obeys a partial differential
equation,

∂tρt(θ) = ∇θ · (ρt(θ)∇θΨ (θ; ρt)) (19)

where Ψ(θ) can be thought of as a potential for the dynam-
ics. This PDE is hard to analyse, so for the remainder of
the paper, we resort to numerical experiments. Since the
output dimension of the regression tasks is 1, we can con-
struct teacher readout weights for a given Ṽ with the same
procedure as was used for the feature weights in previous
sections. For the feature weights in the mean-field regime,
we first draw a weight matrix for the first teacher element-
wise i.i.d from the normal distribution and orthonormalise it:
W† = (w†) ∈ RD×M . For the second teacher, the feature
weights are obtained from

W‡ = αW† + (1− α2)Z, (20)

where Z is another D ×M matrix with i.i.d. Gaussian ele-
ments, and 0 < α < 1 is an interpolation parameter. It can
be easily verified that α also can be interpreted as an overlap
between the two feature weight matrices, where 0 corre-
sponds to orthogonal features and 1 corresponds to identical
features. To make this link clear, we abuse notation slightly
and refer to α as V in analogy with previous sections.

3.2. Results

Our results are presented in Fig. 5, where we show (i) the
initial rate of forgetting/transfer, (ii) the maximum amount
of forgetting/transfer and (iii) the long-time values of forget-
ting/transfer (the value measured at the end of our training).
Details of the procedure used for computing these measures
are given in App. L.
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Figure 5. The interplay of transfer and forgetting as a function
of feature and readout similarity. (a): Initial rate of forgetting,
∂Ft/∂t; (b): Initial rate of transfer, ∂Tt/∂t; (c): Aggregate (long-
time) forgetting, FT ; (d): Aggregate (long-time) transfer, TT ;
(e): Max forgetting reached, maxt Ft; (f): Max transfer reached,
maxt Tt. All quantities are plotted on a 2D grid of readout sim-
ilarity Ṽ vs. feature similarity V in two-layer networks in the
mean-field limit. Parameters: N = 15,M = 1000,K = 250.

As a check on our setup, we observe that our results are
consistent with the preceding ODE limit simulations, as can
be seen from the non-monotonic amount of forgetting for the
maximum forgetting metric as a function of input similarity
V for full readout similarity (Ṽ = 1, Fig. 5c top row); and
the same positive relationship between feature similarity and
transfer observed in the early phase of transfer in the ODE
limit (Fig. 5d top row). We now turn to describing behaviour
in the full space of feature and readout similarities.

3.2.1. INITIAL FORGETTING & TRANSFER RATE

First, we examine the rate of forgetting and transfer at the
moment the tasks are switched (Fig. 5a-b). The transfer rate
is approximately constant along each diagonal, such that
it is an approximate function of the summed feature and
readout similarity Ṽ + V , indicating that both similarities
are roughly interchangeable. By contrast, the forgetting rate
shows a differential effect of each similarity type, with high
readout similarity causing faster forgetting.

3.2.2. MAX & LONG-TIME FORGETTING & TRANSFER

The results in Fig. 5c-f demonstrate an intricate relationship
between each type of task similarity and forgetting/transfer
dynamics. We make several observations. First, the maxi-
mum and long-time metrics differ substantially for forget-
ting. For instance, the best scenario for limiting maximum
forgetting is orthogonal features and fully aligned readouts
(V = 0, Ṽ = 1), whereas for long-time forgetting it is
complete task overlap (Ṽ = 1, V = 1). Intuitively, learn-
ing the same task twice might cause transient forgetting,
but eventually will converge to the correct features for both
tasks. Maximum forgetting is worst in a narrow band of high
summed similarity, whereas long-time forgetting is worst at
more moderate levels of summed similarity. Intuitively, very
similar but subtly different tasks can produce large transient
errors which are ultimately corrected at long times. Finally,
for a fixed summed similarity Ṽ + V , forgetting is worst
when both similarities are approximately equal. This finding
generalises the observation that intermediate task similar-
ity is most harmful to forgetting. For transfer, by contrast,
the maximum and long-time metrics are highly correlated
and often coincide (the point of maximum transfer is the
long-time cutoff in our experiment). Outside of tasks that
overlap completely, there is a slight trend for better transfer
at moderate readout similarity and low feature similarity.

For a constant feature or readout similarity (that is, isolating
any column or row with fixed V or Ṽ respectively), we typ-
ically observe a non-monotonic relationship between simi-
larity and forgetting that peaks at some intermediate level
of similarity. Hence the finding that intermediate amounts
of similarity cause greatest forgetting, observed in the ODE
limit, holds true at most fixed similarities (see App. M for
details).

Finally, we note that transfer depends on readout similarity
even for teachers with identical features. Readout similarity
has a non-monotonic effect, as can be seen in the column
corresponding to full feature similarity (V = 1). This
finding occurs despite the fact that the student network uses
a distinct readout head for each task. We surmise that the
readout weights bias the solution found by the student for
the feature weights during training on the first task. This bias
can have the effect of favouring subsequent learning with
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respect to a second teacher with readout weights that are
more similar to those of the first. We show further empirical
evidence for this phenomenon in App. N.

4. Conclusion
Overall, our results depict a complex relationship between
task similarity, forgetting, and transfer dynamics. The de-
gree of readout and feature similarity, as well as the timing
and form of measurements, all matter in determining the
outcome even qualitatively. By characterising the continual
learning behaviour of simple gradient descent, we hope our
experiments and theoretical framework will serve as a useful
foundation for future investigations into the effect of pro-
posed solutions for continual learning in the teacher-student
setup, ultimately leading to improved algorithms.
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Figure 6. Task similarity in deep vs. shallow networks We plot the accuracy of a two-layer ReLU network with 8 neurons trained on
two tasks. The first task is discriminating T-shirts from high-heels on Fashion MNIST (task 1). The second task is a linear interpolation in
both inputs and labels between task 1 and long-sleeve shirts vs trainers. In the inset, we reproduce Fig. 5b of Ramasesh et al. (2020)
when training various deep networks on two tasks obtained by linearly interpolation of CIFAR10 images. Parameters of our experiment:
learning rate 0.01, D = 784.

A. Reproducing the results of Ramasesh et al. with two-layer neural networks
We report in Fig. 6 a reproduction of an experiment showing that the two-layer networks trained on FashionMNIST (Xiao
et al., 2017) reproduce a key observation of (Ramasesh et al., 2020) made for VGG, ResNet and DenseNet on CIFAR10:
intermediate task similarity leads to worst forgetting. To that end, we trained a two-layer ReLU network with 8 neurons to
discriminate T-shirts from high-heels on Fashion MNIST (task 1). The second task was a linear interpolation in both inputs
and labels between task 1 and long-sleeve shirts vs trainers. We see that at intermediate task similarity, or halfway along the
linear interpolation between the two datasets, forgetting of the first task is the worst. This is the same behaviour Ramasesh
et al. (2020) found consistently for VGG, ResNet and DenseNet when linearly interpolating CIFAR10 images (we reproduce
their Fig. 5b in the inset). Hence the toy model studied here reproduces this behaviour of more realistic setups.

B. Order Parameters
The full set of order parameters for the two-teacher student-teacher networks in the large input limit is given by:

Student-Student Overlap, Q : qkl ≡ 〈λkλl〉 =
1

N
wkwl; (B.1)

Teacher†-Teacher†Overlap, T : tnm ≡ 〈ρmρn〉 =
1

N
w†mw†n; (B.2)

Student-Teacher†Overlap, R : rkm ≡ 〈λkρm〉 =
1

N
wkw

†
m; (B.3)

Teacher‡-Teacher‡Overlap, S : spq ≡ 〈ηpηq〉 =
1

N
w‡pw

‡
q; (B.4)

Student-Teacher‡Overlap, U : ukp ≡ 〈λkηp〉 =
1

N
wkw

‡
p; (B.5)

Teacher†-Teacher‡Overlap, V : vmp ≡ 〈ρmηp〉 =
1

N
w†mw‡p. (B.6)
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C. ODE Derivation
This section presents the derivation of the ODE formulation of the generalisation error for the student-multi-teacher continual
learning framework.

C.1. Generalisation Error in terms of Order Parameters

Our aim is to formulate the generalisation error in terms of the macroscopic order parameters. Let us begin by multiplying
out Eq. 2,

ε†g =
1

2

〈∑
i,k

h†ih
†
kg(λi)g(λk) +

∑
m,n

v†mv
†
ng(ρm)g(ρn)− 2

∑
i,n

h†iv
†
ng(λi)g(ρn)

〉 . (C.1)

and similarly for the second student. These generalisation errors involve averages of local fields, which can be computed as
integrals over a joint multivariate Gaussian probability distribution, all of the form

P(β, γ) =
1√

(2π)F+H |C̃|
exp

{
−1

2
(β, γ)T C̃−1(β, γ)

}
, (C.2)

where β and γ are local fields with number of units F and H respectively, and C̃ is a covariance matrix suitably projected
down from

C =

 Q R U
RT T V
UT VT S

 .

We define
I2(f, h) ≡ 〈g(β)g(γ)〉, (C.3)

where f, h are the indices corresponding to the units of the local fields β and γ. This allows us to write the generalisation
errors as

ε†g =
1

2

∑
i,k

h†ih
†
kI2(i, k) +

1

2

∑
n,m

v†nv
†
mI2(n,m)−

∑
i,n

h†iv
†
nI2(i, n) (C.4)

ε‡g =
1

2

∑
i,k

h‡ih
‡
kI2(i, k) +

1

2

∑
p,q

v‡pv
‡
qI2(p, q)−

∑
i,p

h‡iv
‡
pI2(i, p). (C.5)

C.1.1. SIGMOIDAL ACTIVATION

For the scaled error activation function, g(x) = erf(x/
√

2), there is an analytic expression for the I2 integral purely in terms
of the order parameters (Saad & Solla, 1995a):

I2(i, k) =
1

π
arcsin

qik√
(1 + qii)(1 + qkk)

. (C.6)

In turn, we can similarly write the generalisation errors in terms of the order parameters only:

ε†g =
1

π

∑
i,k

h†ih
†
k arcsin

qik√
(1 + qii)(1 + qkk)

+
1

π

∑
n,m

v†nv
†
m arcsin

tnm√
(1 + tnn)(1 + tmm)

+
2

π

∑
i,n

h†iv
†
n arcsin

rin√
(1 + qii)(1 + tnn)

(C.7)

ε‡g =
1

π

∑
i,k

h‡ih
‡
k arcsin

qik√
(1 + qii)(1 + qkk)

+
1

π

∑
p,q

v‡pv
‡
q arcsin

spq√
(1 + spp)(1 + sqq)

+
2

π

∑
i,p

h‡iv
‡
p arcsin

uip√
(1 + qii)(1 + spp)

. (C.8)
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C.2. Order Parameter Evolution (Training on †)

Having arrived at expressions for the generalisation error of both teachers in terms of the order parameters, we want to
determine equations of motion for these order parameters from the weight update equations (Eq. 5a & Eq. 5b). Trivially,
the order parameters associated with the two teachers, T and S are constant over time, as are the head weights of the
teachers, v†,v‡. When training on †, the student head weights corresponding to ‡ are also stationary; it remains for us to
find equations of motion for R,Q,U and h†, which we derive below. The equivalent derivations when training on teacher ‡
can be made by using the update in Eq. 5b instead.

C.2.1. ODE FOR R

Consider the inner product of Eq. 5a (in the case of * = †) with w†n:

wµ+1
k w†n −wµ

kw
†
n = −αW√

D
h†µk g

′(λµk)∆†µxµw†n (C.9)

= −αWh†µk g
′(λµk)∆†µρµn (C.10)

rµ+1
kn − r

µ
kn = −αW

D
h†µk g

′(λµk)∆†µρµn (C.11)

If we let τ ≡ µ/D and take the thermodynamic limit of D →∞, the time parameter becomes continuous and we can write:

drin
dτ

= −αWh†i 〈g
′(λi)∆

†ρn〉, (C.12)

where we have re-indexed k → i.

C.2.2. ODE FOR Q

Consider squaring Eq. 5a (here we can simply use * to denote training on either teacher).

wµ+1
k wµ+1

i −wµ
kw

µ
i = −αW√

D
h∗µi g

′(λµi )∆∗µxµwµ
k −

αW√
D
h∗µk g

′(λµk)∆∗µxµwµ
i

+
α2
W

D
h∗µi g

′(λµi )h∗µk g
′(λµk)(∆∗µxµ)2 (C.13)

= −αWh∗µi g
′(λµi )∆∗µλµk − αWh∗µk g

′(λµk)∆∗µλµi

+
α2
W

D
h∗µi g

′(λµi )h∗µk g
′(λµk)(∆∗µxµ)2 (C.14)

qµ+1
ki − q

µ
ki = −αW

D
h∗µi g

′(λµi )∆∗µλµk −
αW

D
h∗µk g

′(λµk)∆∗µλµi

+
α2
W

D2
h∗µi g

′(λµi )h∗µk g
′(λµk)(∆∗µxµ)2. (C.15)

Performing the same reparameterisation of µ and the same thermodynamic limit, we get:

dqik
dτ

= −αWh∗i 〈g′(λi)∆∗λk〉 − αWh∗k〈g′(λk)∆∗λi〉+ α2
Wh∗i h

∗
k〈g′(λi)g′(λk)∆∗2〉. (C.16)

Note: in the limit, (xµ)2 → D since individual samples are taken from a unit normal. Hence the 1/D limit remains the
same decay rate for each term.

C.2.3. ODE FOR U

Consider the inner product of Eq. 5a (in the case of * = †) with w‡p:

wµ+1
k w‡p −wµ

kw
‡
p = −αW√

D
h†µk g

′(λµk)∆†µxµw‡p (C.17)

= −αWh†µk g
′(λµk)∆†µηµp (C.18)

uµ+1
kp − u

µ
kp = −αW

D
h†µk g

′(λµk)∆†µηµp . (C.19)
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If we let τ ≡ µ/D and take the thermodynamic limit of D →∞:

duip
dτ

= −αWh∗i 〈g′(λi)∆∗ηp〉. (C.20)

C.2.4. ODE FOR h∗

Here, we simply take the thermodynamic limit of Eq. 5b (for * = †):

dh†i
dτ

= −αh〈∆†g(λi)〉 (C.21)

D. Explicit Formulation
We can go one step further and write the right hand sides of the ODEs in terms of more concise integrals. Recall that for no
noise

∆†µ ≡
∑
k

h†µk g(λµk)−
∑
m

v†mg(ρµm). (D.1)

Substituting this term into the ODEs above gives us the expanded versions below:

drin
dτ

= −αWh†i

〈
g′(λi)

[∑
k

h†kg(λk)−
∑
m

v†mg(ρm)

]
ρn

〉
; (D.2)

dqik
dτ

= −αWh†i

〈
g′(λi)

∑
j

h†jg(λj)−
∑
m

v†mg(ρm)

λk〉

− αWh†k

〈
g′(λk)

∑
j

h†jg(λj)−
∑
m

v†mg(ρm)

λi〉

+ α2
Wh†ih

†
k

〈
g′(λi)g

′(λk)

∑
j

h†jg(λj)−
∑
m

v†mg(ρm)

2〉
; (D.3)

duip
dτ

= −αWh†i

〈
g′(λi)

[∑
k

h†kg(λk)−
∑
m

v†mg(ρm)

]
ηp

〉
; (D.4)

dh†i
dτ

= −αh

〈[∑
k

h†kg(λk)−
∑
m

v†mg(ρm)

]
g(λi)

〉
. (D.5)

Similarly to the I2 integral defined in Eq. C.3, we further define:

I3(d, f, h) = 〈g′(ζ)βg(γ)〉, (D.6)
I4(d, e, f, h) = 〈g′(ζ)g′(ι)g(β)g(γ)〉; (D.7)
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where ζ, ι are local fields of the student with indices d, e; and β, γ can be local fields of either student or teacher with indices
f, h. Substituting these definitions into the expanded ODE formulations gives:

drin
dτ

= αWh†i

[
M∑
m

v∗mI3(i, n,m)−
K∑
k

h†kI3(i, n, k)

]
; (D.8)

dqik
dτ

= αWh†i

 M∑
m

v†mI3(i, k,m)−
K∑
j

h†jI3(i, k, j)


+ αWh†k

 M∑
m

v†mI3(k, i,m)−
K∑
j

h†jI3(k, i, j)


+ α2

Wh†ih
†
k

 K∑
j,l

h†jh
†
l I4(i, k, j, l) +

M∑
m,n

v†mv
†
nI4(i, k,m, n)

−2

K∑
j

M∑
m

v†mh
†
jI4(i, k, j,m)

 ; (D.9)

duip
dτ

= αWh†i

[
M∑
m

v†mI3(i, p,m)−
K∑
k

h†kI3(i, p, k)

]
; (D.10)

dh†i
dτ

= αh

[
M∑
m

v†mI2(m, i)−
K∑
k

h†kI2(k, i)

]
. (D.11)

This completes the picture for the dynamics of the generalisation error. It can be expressed purely in terms of the head
weights and the I integrals. For the case of the scaled error function we can evaluate the I2, I3, and I4 analytically meaning
we have an exact formulation of the generalisation error dynamics of the student with respect to both teachers in the
thermodynamic limit. Further details on the integrals can be found in App. E. The next chapter introduces the experimental
framework that compliments the theoretical formalism presented above.

E. Gaussian Integrals under Scaled Error Function
In the derivations of App. C, we introduce a set of integrals over multivariate Gaussian distributions, labelled I2, I3 and I4.
They are defined as:

I2(f, h) ≡ 〈g(β)g(γ)〉, (E.1)
I3(d, f, h) ≡ 〈g′(ζ)βg(γ)〉, (E.2)

I4(d, e, f, h) ≡ 〈g′(ζ)g′(ι)g(β)g(γ)〉; (E.3)

where ζ, ι are local fields of the student with indices d, e; and β, γ can be local fields of either student or teacher with indices
f, h; and g is the activation function.

These integrals do not have closed form solutions for the ReLU activation. For the scaled error function however, they can
all be solved analytically. They are given by:

I2 =
1

π
arcsin

c12√
(1 + c11)(1 + c22)

; (E.4)

I3 =
2c23(1 + c11)− 2c12c13√

Λ3(1 + c11)
; (E.5)

I4 =
4

π2
√

Λ4

arcsin
Λ0√
Λ1Λ2

; (E.6)



Continual Learning in the Teacher-Student Setup

where

Λ0 = Λ4c34 − c23c24(1 + c11)− c13c14(1 + c22) + c12c13c24 + c12c14c23; (E.7)

Λ1 = Λ4(1 + c33)− c223(1 + c11)− c213(1 + c22) + 2c12c13c23; (E.8)

Λ2 = Λ4(1 + c44)− c224(1 + c11)− c214(1 + c22) + 2c12c14c24; (E.9)

Λ3 = (1 + c11)(1 + c33)− c213; (E.10)
(E.11)

and where c is the relevant projected down covariance matrix.

F. Overlap Generation
In subsubsection 2.1.2, we investigate the effect of task similarity on forgetting. In our framework, the teachers act as
tasks. From App. C, we know that the learning dynamics in the student can be fully described by the overlap parameters,
which includes the teacher-teacher overlap matrix, V . For our investigation we need a method to generate teachers with
specific overlaps; specifically— in the normalised teachers Ansatz, and for teachers with a single hidden unit—we perform
simulations over the full range of V from 0 to 1. In this configuration we simply need a procedure to generate two
N -dimensional vectors, v1, v2, with an angle θ between them such that:

v1 · v2 = θ. (F.1)

Fortunately there is a standard algorithm for this. First we define two vectors

ṽ1 =

(
0
1

)
; ṽ2 =

(
sin θ
cos θ

)
.

Second, we generate an N × N orthogonal matrix, R. There is a standard sicpy implementation for this based on QR
decomposition of a random Gaussian matrix2.

Finally, multiply the first two columns of R with either vector to generate the rotated vectors:

v1 = R[:, 1 : 2] · ṽ1; (F.2)
v2 = R[:, 1 : 2] · ṽ2. (F.3)

G. Experiment Details
In this section we provide details of experimental procedures used to obtain the graphs and figures presented in this work.

In the ODE limit investigation, the following parameters were used:

• Input dimension = 10,000;
• Test set size = 50,000;
• SGD optimiser;
• Mean squared error loss;
• Teacher weight initialisation: normal distribution with variance 1;
• Student weight initialisation: normal distribution with variance 0.001;
• Student hidden dimension: 2;
• Teacher hidden dimension: 1;
• Learning rate: 1

In the mean-field limit investigation the following parameters were used:

• Input dimension = 15;

2SciPy Stats Module Docs

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ortho_group.html
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• Test set size = 25,000;
• SGD optimiser;
• Mean squared error loss;
• Teacher weight initialisation: normal distribution with variance 1;
• Student weight initialisation: normal distribution with variance 0.001;
• Student hidden dimension: 1000;
• Teacher hidden dimension: 250;
• Learning rate: 5
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H. Forgetting vs. V at Multiple Intervals
In Fig. 3, we show the cross section of forgetting vs. V at a set of intervals after the task boundary. In Fig. 7, we show this
cross-section at a greater range of time delays after the switch.
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Figure 7. Aggregate forgetting, Ft, vs. teacher-teacher overlap, V , at different time intervals post task-switch. A teacher-teacher overlap
of 0 corresponds to orthogonal teacher weight vectors, whereas a teacher-teacher overlap of 1 corresponds to aligned teacher weight
vectors. Forgetting is strongest for teachers that are intermediately correlated, while the student is relatively robust to forgetting for aligned
or orthogonal teachers. The distribution of error changes moves significantly as time spent training on the new task increases.

I. Forgetting vs. Feature Similarity, ReLU Networks
This sections contains the same experiments as those presented in subsubsection 2.1.2, but for networks with ReLU
nonlinearities. Fig. 8 shows for various values of V the generalisation error of the first teacher over time. Fig. 9 shows the
cross sections of forgetting vs. V at various time intervals after the task switch.
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Figure 8. Generalisation error with respect to first teacher, log ε†, vs. timestep, s, for a range of teacher-teacher overlaps for ReLU
networks. Task switches occur at steps 50,000 and 100,000. This plot is the ReLU equivalent of Fig. 3 in subsubsection 2.1.2
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Figure 9. Aggregate forgetting, Ft, vs. teacher-teacher overlap, V , at different time intervals post task-switch for ReLU networks. The
distribution of error changes moves faster compared to the sigmoid case in subsubsection 2.1.2. By the second task switch, the function is
monotonic.

J. Effect of Activation & Distribution Evolution
The learning dynamics and corresponding forgetting/transfer distributions for varying teacher-teacher overlaps presented
above are for sigmoidal activation functions. In our investigations we found that different activation functions can have a
strong impact on how the forgetting vs. teacher-teacher overlap distributions change over time. In particular, in the ReLU
case, the distribution moves relatively quickly from a hump curve (seen in the sigmoidal case) to a monotonic function,
where the higher overlaps lead to less forgetting. Detailed plots for the ReLU case are shown in App. I. Forgetting and
transfer are not stationary attributes, hence the inclusion of a time component in our definitions of these quantities. The
unsurprising observation that the distribution of forgetting over different overlaps changes as time progresses beyond the
switch point is not discussed in previous research. The nature of this evolution and its contributing factors are worthy of
further investigation.

K. First Task Convergence
The setting we work in throughout our experimentation is one in which good convergence has been achieved on the first
task before the switch. Some of the observations we make are therefore conditional on this convergence. We show below
in Fig. 10 one example of a phenomenon (higher rate of forgetting for greater task similarity) we observed in the main
results that does not hold in settings where lesser convergence is achieved on the first task.
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Figure 10. Generalisation error with respect to first teacher, log ε∗, vs. timestep, s, for a range of teacher-teacher overlaps, V . Here the
task switch occurs relatively early—before convergence on the first task. Unlike in settings where better convergence has been achieved
the initial rate of forgetting is not largest for highest overlap. In fact here there is a period of co-learning just after the task-switch.
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L. Forgetting/Transfer Metrics Procedure (Mean-Field Limit)
In Fig. 5, we present metrics of forgetting and transfer for various task similarity configurations averaged over 50 random
seeds. Specifically we give the initial rates, maxima, and long-time values. Here we provide details on how these are
evaluated.

L.1. Initial Rate

Let s̃ be the training step at which the teacher switches. We approximate the initial rate of forgetting as:

1

N

N∑
i=1

ε†|s̃+i − ε†|t=s̃+i−1, (L.1)

where N is the number of steps over which we take the average change (N = 20 for experiments shown in Fig. 5). Since
we are not using the ODE solutions but pure simulation of the mean-field limit in Fig. 5, such a sampling is necessary to
accurately approximate the rates. Likewise the initial rate of transfer is computed via:

1

N

N∑
i=1

ε‡|s̃+i−1 − ε‡|t=s̃+i. (L.2)

L.2. Maxima

The maximum forgetting and transfer amounts are computed with

max
t

(ε†|s̃+t)− ε†|s̃ and ε†|s̃ −min
t

(ε‡|s̃+t). (L.3)

L.3. Long-Time Limit

Initially we computed the long-time limits simply as the differences in generalisation error at the end of training with those
at the switch point. However, for forgetting we needed to adjust this procedure slightly. Fig. 11 shows a run associated with
a single task configuration in the mean-field limit—in particular, this run is for tasks with full feature overlap.
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Figure 11. Generalisation errors, log ε, vs. training step, s for both teacher 1 (†) and teacher 2 (‡) for the mean-field limit with full feature
similarity between teachers. In the second task phase, there is sharp initial forgetting. This is followed by a period of co-learning. Then at
around two million steps there is a second turn of forgetting. This corresponds with the point at which the performance on the second task
matches the best performance attained by the student with respect to the first teacher in the first phase.
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M. Ṽ = 0 Row in Mean-Field Limit
We noted in Fig. 5 that the orthogonal readout row, Ṽ , displays similar trends to the results of varying the feature similarity
in the ODE limit. Here we show more details plots from the row beyond the coarse heatmap in Fig. 5. Fig. 12 shows
cross sections of forgetting vs. α at different intervals after the switch. They are the equivalent plots of Fig. 3 but for the
orthogonal readout row runs of Fig. 5. They show that as for the feature similarity variation in the ODE limit, there is a
non-mnotonic relationship between similarity and forgetting such that the intermediate similarity is worst. The development
of the shape of the cross-section is also similar. Trivially it begins flat. The non-monoticity is sharpest at intermediate
intervals after the switch, and in the long-time limit flattens out again with a wide peak and very little forgetting for large
overlap.
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Figure 12. Aggregate forgetting, Ft, vs. teacher-teacher feature overlap, α, for constant zero readout overlap, Ṽ = 0 in the mean-field
limit, at different time intervals post task-switch.
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N. Readout Bias on Feature Solution
One of the interesting results we found from the experiment shown in Fig. 5 was that for full feature overlap there was still
variation in transfer ability for different readout similarities. After the switch in our multi-head student setup, the student is
given a new set of randomly initialised head weights. The previously learned readout weights for the first task are (as far as
the transfer ability is concerned) discarded. This newly initialised student head will be (approximately) orthogonal to all of
the second teacher head weights, regardless of the relationship between the second teacher head weights and the first teacher
head weights. Despite this, there is better transfer for the tasks where there is overlap in the teacher readouts. We hypothesis
that this is due to a bias in SGD dynamics: during the first task phase, the local minimum that the solution finds within the
feature space is biased by the readout weights it is concurrently trying to optimise. Taking an extreme example, suppose
you have two hidden nodes and teacher 1 has readout weight = 1 on node 1, and 0 on node 2. While training on task 1, the
network will not learn the input-to-hidden node 2 weights since this node does not impact the output. Therefore there will be
a transfer cost if the second task relies on both nodes, which arises from the requirement to learn the input-to-hidden weights
that were unimportant for task 1. We verify this idea empirically by tracking the movement of the feature weights after the
task switch for different readout similarities. The results are shown in Fig. 13 and demonstrate that the feature weights move
more (further away from the solution found for task 1, which has identical features to task 2) for task configurations with
lower readout similarity.
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Figure 13. (Normalised) mean squared error between the student feature weights at a given step of training and the student feature
weights at the switch point, W|s,W|s̃), vs. training step, s for full feature similarity and various readout similarity configurations in the
mean-field limit. Trivially the MSE is 0 at the switch. After the switch, despite moving onto a new teacher with the same features as the
first teacher, the student feature weights move. However they move more for task configurations in which the second readout weights are
more dissimilar from the first.


